
Comparing Neural Networks and ARMA Models

in Artificial Stock Market ∗

Jiř́ı Krtek
Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation.

e-mail: krtek@karlin.mff.cuni.cz

Miloslav Vošvrda †

Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation.

e-mail: vosvrda@utia.cas.cz

Abstract. We create a new way of comparing models for forecasting stock prices. Our
idea was to create a simple game in which the individual models, which we want to com-
pare, would compete against each other. Therefore, we were inspired by the heterogeneous
agent models and we created an artificial market. Models, which we want to compare, act
in our artificial market as a forecasting strategies of each agent who trades on the market.
There are traded one risky asset paying a dividend and one risk-free asset in our artificial
market. Individual agents decide whether to buy or sell the risky asset on the basis of
their expectations about future excess return of the risky asset. Their expectations are
driven by the models we want to compare. Each agent uses his own model for predicting
future prices of risky assets and dividends. Delayed prices of risky asset and dividends
provided the basis for predictions. The way how agents trade (bought or sold risky asset)
affects the price of risky asset, which in turn influences their expectations and therefore
their decisions whether to buy or sell. Moreover, each agent can recalculate his strategy
(the parameters of his forecasting model), if he is not satisfied with its performance. So
the forecasting strategies and the artificial market evolve side by side.
The models we confront are neural networks – feed-forward neural networks and Elman’s
simple recurrent neural networks – and vector ARMA models, namely, VAR and VARMA.
It remains only to add that the winning model is the one which earns the most money.

Keywords: Neural networks, vector ARMA, artificial market.

JEL classification: C23, C45, C53, G17
AMS classification: 91G80

∗The research was supported by grant of GA ČR 402/09/H045 and grant SVV 305–09/261315
†Supervisor

53

1. Introduction

In this paper we compare vector ARMA models as classic delegates of linear models
and neural networks as delegates of non-linear models: specifically vector AR and
ARMA models with various lags of variables and errors with feed-forward,as well as
Elman’s simple recurrent neural networks with various inputs – lags of variables, and
eventually lagged outputs of neurons from the hidden layer (in Elman’s networks).

These forecasting models are not compared using real data as it is customary to
do. Accuracy of forecasts or their standard deviations are not calculated. We tried
to use an unconventional way of comparing forecasting strategies, in order to create
a new method.

The models are compared in an artificial stock market with one risk-free asset
and one risky stock. Traders, or agents, in the market use the aforementioned models
as forecasting strategies. The best model among them is simply the one that earns
the most money.

It is also important to create an artificial stock market that has similar charac-
teristics to the real market. The characteristics of the artificial market are therefore
also studied and the artificial market is built to be conformable to the real one.

2. Artificial Stock Market

The model which simulates market environment was inspired mostly by [3], [12], [6]
and [5].

Two assets are traded in the market. The first is a risk-free asset which is
perfectly elastically supplied and has a constant rate of return r. The second one is
a risky asset whose price at time t is denoted by pt. The risky stock can be divided
into endlessly small pieces and pays dividend dt at time t; the dividend is chosen (as
in [6]) to follow the stationary AR process

dt+1 = d̄+ ρ(dt − d̄) + εd,t+1, (1)

where ρ = 0.95 is chosen this way to provide a persistent process which is still
stationary, d̄ is a chosen constant and εd,t ∼ N(0, σd).

There are four groups of traders. The first one is made up of traders who use
a vector AR (=VAR) model to predict the future dividend and price change of
the risky asset. The second group consists of traders whose forecasting strategy is
vector ARMA (=VARMA) model. The third group is comprised of traders whose
forecasting strategy uses a feed-forward neural network (=FNN) with three layers
having perceptrons as hidden units. Inputs are lagged values of dividends and price
changes. The last group uses Elman’s simple recurrent neural network (=SRN) to
forecast the dividend and price change. Inputs are again lagged dividends and price
changes. Number of lags is chosen randomly from the set {1, 2, 3} in all cases.

As in [3] and many other heterogeneous-agent models, it is assumed that all
traders maximise their expected utility function. It is also assumed that all traders
have the same constant absolute risk aversion (=CARA) utility function U , with
the same risk aversion parameter λ. Let Wi,t denote the wealth of trader i at time
t. Furthermore, let hi,t be the number of agent i’s shares at time t, then trader’s

54

goal is to maximise the expected utility at time t+ 1 given information up to time
t over his number of shares, i.e.,

max
hi,t

E[U(Wi,t+1)|It] = Ei,t[U(Wi,t+1)], (2)

where It denotes the information set available at time t.
Under the assumption of exponential CARA utility function and the Gaussian

distribution of forecasts, the optimal number of shares at time t + 1 is the ratio of
the expected excess return with respect to the conditional variance of future price
and dividends, i.e.,

h∗
i,t+1 =

Ei,t[pt+1 + dt+1]− (1 + r)pt
λσ2

i,t

, (3)

where σ2
i,t is the conditional variance of pt+1 + dt+1 given It. Traders differ only in

their forecasting strategies, i.e., the way they form their expectation about pt+1+dt+1

at time t, i.e., in Ei,t[pt+1 + dt+1].

2.1. Price Evolution

The model of price evolution is borrowed from [12] and [3].
According to the previous section, h∗

i,t will be used for the desired number of
risky shares at time t, while hi,t will denote the actual number of shares held.

Let us introduce the following notation. Let bi,t, be the number of shares that
trader i would like to buy and let ai,t be the number of shares which he would like
to sell, i.e.,

bi,t =

{
h∗
i,t − hi,t−1, h∗

i,t ≥ hi,t−1,
0, otherwise.

(4)

ai,t =

{
hi,t−1 − h∗

i,t, h∗
i,t < hi,t−1,

0, otherwise.
(5)

Price change of the risky asset is based on the current bid-ask spread. Let N be
the total number of traders. If Bt =

∑N
i=1 bi,t denotes the overall demand for the

risky asset and At =
∑N

i=1 ai,t the overall supply of the risky asset, then the number
of shares held by trader i at time t is given by the following rule:

hi,t =

hi,t−1 + bi,t − ai,t, Bt = At,

hi,t−1 +
At

Bt
bi,t − ai,t, Bt > At,

hi,t−1 + bi,t − Bt

At
ai,t, Bt < At.

(6)

The price adjustment is based on the excess demand Bt − At and is given by

pt+1 = pt(1 + β(Bt − At)) + εr,t, (7)

where εr,t is the noise (i.i.d. random variables from N(0, σ2
r)) added in order to

represent other traders potentially present in the market, and β is some function of
excess demand. Following [3], β was set to

β(Bt − At) =

{
tanh(β1(Bt − At)), Bt ≥ At,
tanh(β2(Bt − At)), Bt < At.

(8)

55

2.2. Forecasting Strategies

Traders want to forecast future change of the price and future dividends. As was
previously stated, this work compares neural networks with ARMA models. Traders
therefore use neural networks or some vector ARMA model as their forecasting
strategy. This is the only thing that differentiates one trader from another.

The first group of agents uses VAR(p) model as their forecasting strategy. Each
trader chooses randomly his lag p from set {1, 2, 3} at the beginning of the simula-
tion, then he uses conditional maximum likelihood for searching for optimal param-
eters. The conditional maximum likelihood method was implemented in accordance
with [11].

Traders of the second type forecast future values with the aid of VARMA(p,q)
model. Lags p and q are again chosen randomly from set {1, 2, 3} at the beginning
of the simulation. Conditional maximum likelihood is used again. The conditional
maximum likelihood method was implemented in accordance with [2], [8] and [7].

There were also two groups whose forecasting strategies were based on neural
networks. The first of them used a feed-forward neural network with 3 layers.

Number of lags of price changes and dividends nl which served as inputs were
taken randomly from {1, 2, 3}. So we had 2nl inputs – nl for lags of price changes
and nl for lags of dividends – and inputs {pt − pt−1, pt−1 − pt−2, . . . , pt−nl+1 − pt−nl

}
and {dt, dt−1, . . . , dt−nl+1} were used to generate the output {p̂t+1 − pt, d̂t+1} (the
estimate of {pt+1 − pt, dt+1}).

Its hidden layer consists of perceptrons with sigmoid activation function. The
number of perceptrons in the hidden layer was chosen randomly from set {1, 2, . . . , number of inputs}.
The scheme of topology of the feed-forward network that we used can be seen in
Figure 1.

Figure 1: Topology of feed-forward neural network.

The second group employs Elman’s simple recurrent neural network with 3 layers.
Numbers of lags of price changes and dividends were again taken randomly from

56

{1, 2, 3} and the hidden layer consists again of perceptrons with a sigmoid activation
function. The number of hidden neurons in the hidden layer was again chosen
randomly from set {1, 2, . . . , 2∗number of lags}. So the construction of the topology
is analogical to that of a feed-forward neural network except that in this case the
topology includes backward loops – the output of each hidden unit is sent back to
form a new input vector with the lagged price changes and dividends. The scheme
of the Elman’s network topology that we used can be seen in Figure 2.

Figure 2: Topology of Elman’s simple recurrent neural network.

Backpropagation, respective backpropagation through time, and genetic algo-
rithms were used for learning FNN and respective SRN. Genetic algorithms were
used only for optimisation of the weight matrix of the network. All included learning
algorithms had access to the correct inputs, so it was an instance of ”learning with
the teacher” as can be seen in Section 2.3.

Networks were not learned each time a new input–output pair was discovered.
Rather, they were learned after a bigger set of input–output pairs was known, as
can be seen in Section 2.3.

The maximum number of iterations, respective generations in the case of genetic
algorithms, was set to 1000. We also stop the learning process when the decrease of
the error function was less than 0.001.

The individuals in the genetic algorithms case were represented as vectors of real
numbers where each number represented one weight of the network. The population
size was set to 50, probability of mutation to 0.04, new generation always contained
the best found individual and the rest of it was formed by crossover and mutation
of the best 5 individuals from the previous generation.

For more information about feed-forward neural networks and Elman’s networks
see [10], [1] or [9].

In the formula (3), with which traders form their desired holding of shares, the

57

conditional variance of pt+1 + dt+1, i.e., the term σ2
i,t is also used. Following [3] we

let all traders estimate this conditional variance by

σ2
i,t = (1− θ)σ2

t−1|n + θ(pt + dt − Ei,t−1[pt + dt])
2, (9)

where

σ2
t|n =

∑n−1
j=0 [Pt−j − P̄t|n]

2

n− 1
(10)

with

P̄t|n =

∑n−1
j=0 Pt−j

n
. (11)

2.3. Learning of Traders

The learning was taken from [3],or more accurately a part of trader learning from [3]
was adopted and part was left out. No business school is in our artificial market, so
there is no social interaction, which means that every agent has his own forecasting
strategy and his own learning algorithm and he does not tell any other agent about
them. He keeps his forecasting strategy secret. The big companies in the real market
also keeps their forecasting models secret, so this feature of the artificial market is
not in contrast with reality.

Each trader was assigned an amount of money and number of risky shares at the
beginning of the simulation. This forms his initial wealth. Every trader knows his
wealth as well as the wealth of all other agents in this artificial market. After some
period of time, say k, he counts the difference between his present wealth and wealth
at time t− k, i.e., Wi,t −Wi,t−k. This indicates how much money he has earned or
lost. He can also count how much money other agents have earned or lost; thereby,
he knows how good he is in comparison to other agents. Everyone consequently gets
a rank Ri,t. This makes some kind of social pressure on trader i. Number

ri,t =
Ri,t

N
(12)

is then the probability that agent i recounts parameters of his forecasting strategy
due to pressure of society. The smaller his rank the smaller the probability that he
learns new parameters of his strategy.

Each trader can also recounts his strategy on the basis of growth rate of his
wealth over the previous period.

Therefore, even if trader i does not recount his strategy because of pressure of
society, there is still chance that he will do it for a different reason. Let

χk
i,t =

Wi,t −Wi,t−k

|Wi,t−k|
(13)

be trader i’s growth rate of wealth over the previous period. It in fact measures how
effective trader i’s strategy was. Then

si,t =
1

1 + exp{χk
i,t}

(14)

58

is the probability that trader i will recount his strategy because of its low efficiency.
So the final probability that trader i recounts his strategy is

ui,t = ri,t + (1− ri,t)si,t =
Ri,t

N
+

N −Ri,t

N

1

1 + exp{χk
i,t}

. (15)

If trader i recounts parameters of his strategy at the end of the tth day, he will
learn on the data of length m, where m is a constant common to all traders.

3. Simulation

The simulation had 10000 time steps and its main goal was to show whether some
group of traders outperforms others. But it was also studied whether the artifi-
cial market behaves as the real one, i.e., whether stylised facts – returns have a
non-Gaussian distribution, prices follow random walk – are present in our artificial
market.

Several simulations with different setups were performed. Traders always learn
at the beginning of the simulation on simulated data of length 100. The dividend
process was generated according to (1). Values of price were taken from Gaussian
distribution N(µp, σ

2
p). Moreover, the last values of dividend and price served as

initial values to whole simulation. Setup of the simulation can be seen in Table 1.
We were inspired by [5] and, in order to make our artificial market more realistic,

we distributed the initial money and shares in some simulations according to Zipf’s
law in the following way: 20 % of the traders possessed 80 % of the initial total
wealth, the remaining 80 % of the traders then possessed only 20 % of initial total
wealth.

3.1. Verifying Stylised Facts

As we can see in the tables below, almost all stylised facts holds in the artificial
market. The price series are depicted in Figures 3 and 4.

The first stylised fact is that distribution of returns rt = log(pt) − log(pt−1) is
non-Gaussian. The Jeraque–Bera test was used to test it, see Table 2.

As you can see, the null hypothesis about Gaussian distribution of returns cannot
be rejected in most periods, so this stylised fact does not hold.

The Dickey–Fuller test was used to test the null about price series having unit
root. It rejected null only in the first period in the case without Zipf’s law (see
Table 3). This may simply be due to the fact that it was the initial period and the
market did not perform well yet. If we tested the period 400–2000, DF–test will not
reject the null (p–value = 0.0786).

In the case with Zipf’s law, DF–test rejected the null only in the second period
(see Table 3). This cannot be justified by any logic, but we came to the conclusion
that this stylised fact held.

If we confirm that returns are i.i.d. random variables, the last stylised fact will
also be verified. The Brock-Dechert-Scheinkman test was chosen for this. The results
of the test were not sensitive to the distance parameter. The distance parameter

59

Market parameters
Initial amount of money 100
Total amount of shares 30

interest rate r 0.001
price adjustment function tanh

price adjustment β1 2× 10−6

price adjustment β2 2× 10−6

Price process
Initial mean µp 150

Initial variance σ2
p 0.16

noise parameter σ2
r 0.04

Dividend process
ρ 0.95
d̄ 0.2
σd 0.02

Learning parameters
k 150
m 180

Traders
Number of traders in each group 15

Total number of traders 60
Risk aversion parameter λ 3

parameter θ 0.01333
parameter n 10

Table 1: Setup of the modified simulation.

period Jeraque–Bera p–value Jeraque–Bera, Zipf p–value, Zipf
1–2000 0.3355 0.846 1.4796 0.477

2001–4000 1.3545 0.508 8.8353 0.012
4001–6000 8.896 0.012 2.7963 0.247
6001–8000 1.8851 0.390 0.9549 0.620
8001–9999 0.2053 0.902 3.2191 0.200

Table 2: Gaussian distribution testing of return series. The ”Zipf” attribute means
that the initial money and shares were distributed according to Zipf’s law.

was chosen to be ϵ = st.dev.. The parameter of embedding dimensions was chosen
to be m = 5. The results can be seen in Table 4.

As we can see there is only one rejection, so we can again say, that this stylised
fact holds in our artificial market.

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

125

130

135

140

145

150

155

160

165

Price Evolution

Time

P
ric

e

Figure 3: Price evolution in artificial market without Zipf’s law.

period p–value p–value, Zipf
1–2000 0.0136 0.684

2001–4000 0.193 0.0233
4001–6000 0.062 0.102
6001–8000 0.557 0.113
8001–9999 0.436 0.19

Table 3: Dickey–Fuller test of null that price series has unit root. The ”Zipf”
attribute means that the initial money and shares were distributed according to
Zipf’s law.

period p–value (m = (2, 3, 4, 5)) p–value (m = (2, 3, 4, 5)), Zipf
1–2000 (0.35, 0.24, 0.24, 0.36) (0.77, 0.44, 0.45, 0.46)

2001–4000 (0.63, 0.99, 0.96, 0.88) (0.74, 0.93, 0.91, 0.87)
4001–6000 (0.0271, 0.10, 0.20, 0.16) (0.56, 0.98, 0.69, 0.39)
6001–8000 (0.85, 0.89, 0.66, 0.68) (0.91, 0.84, 0.81, 0.63)
8001–9999 (0.92, 1.00, 0.95, 0.55) (0.67, 0.90, 0.89, 0.57)

Table 4: BDS–test of null, i.e., whether returns are i.i.d. The ”Zipf” attribute means
that the initial money and shares were distributed according to Zipf’s law.

61

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

145

150

155

160

165

170

175

180

Price Evolution

Time

P
ric

e

Figure 4: Price evolution in artificial market with Zipf’s law.

3.2. Comparing Strategies

When comparing agents, the criteria of their success was the amount of money they
earned – the final wealth they achieved. We also present how many times agents
recounted the parameters of their forecasting strategies, but it is only an extrinsic
indicator.

In the second type of simulation, the simulation with Zipf’s law, the amount of
money criterion was changed to the ratio of the final and initial wealth values. The
results are shown in Table 5.

strategy final wealth recounting fraction of wealths recounting, Zipf
VAR 2171119 43.6 41899.5 47.2

VARMA 2226319 47.3 40942.4 48.3
FNN 2064486 50.7 39989.8 48.7
SRN 2047640 54.3 43640.5 52.7

Table 5: The average final wealth and number of recounting parameters of the
forecasting strategy in the case of simulation without Zipf’s law. The average ratio
of the final and initial wealth values, and again the number of recounting parameters
of the forecasting strategy in the case of simulation with Zipf’s law.

We can see that the best type of forecasting strategy in terms of the highest

62

average final wealth is VARMA. If we take a look at Table 6, we will see again that
VARMA outperforms other models. Neural networks do not have better results,
probably due to their complexity. If we want to use some neural network, the main
problem is to choose a suitable topology. We chose the topologies of our networks
randomly and that is probably why they did not perform better.

rank strategy final wealth recounting
1 VARMA(3,2) 3385824 36
2 VARMA(2,2) 2623202 38
3 SRN(2,2,G) 2234082 40
4 FNN(1,1,G) 2225980 27
5 VARMA(1,2) 2223562 34
6 VARMA(3,1) 2220488 37
7 FNN(1,1,G) 2219796 36
8 VAR(3) 2201358 36

Table 6: The chart of 8 best strategies in term of highest final wealth – simulation
without Zipf’s law. Neural networks are stated with number of lags of variables
they used (first number in brackets), number of hidden neurons (second number in
brackets) and their learning algorithm (the letter – B for Backpropagation, G for
Genetic algorithms).

On the other hand, Elman’s networks overruled the second type of simulation,
where the Zipf’s law was used – see Table 7. But it was caused by the fact that
in this group of traders number of the wealthy ones was the smallest – those who
got more money and shares at the beginning of the simulation. The best traders,
traders who increased their wealth most, are mostly the poorer ones.

From both Tables 6 and 7 and from Table 8 we can also see that neural networks
with genetic algorithms for their training outperform those with backpropagation.

rank strategy fraction of wealths recounting initial wealth
1 VAR(2) 100090 66 0.576012
2 SRN(2,1,G) 64867 65 3.050353
3 FNN(2,3,G) 63902 64 3.787920
4 SRN(5,4,G) 59898 62 4.283111
5 FNN(1,1,G) 59548 63 3.993537
6 SRN(1,1,B) 58456 67 0.282847
7 FNN(3,1,G) 56663 64 6.684457
8 SRN(5,4,G) 51787 62 4.524875

Table 7: Chart showing the 8 best strategies in terms of the highest ratio of final
and initial wealth – simulation with Zipf’s law. Neural networks are swown with the
number of lags of variables they used (the first number in brackets), the number of
hidden neurons (the second number in brackets) and their learning algorithm (the
letter – B for Backpropagation, G for Genetic algorithms).

63

strategy training alg. average final wealth
FNN Backpropagation 2017850
FNN Genetic algorithm 2117785
SRN Backpropagation 1994354
SRN Genetic algorithm 2108539

Table 8: Average final wealth in simulation without Zipf’s law.

4. Conclusions

We created an artificial market without social interactions of agents in order to
compare forecasting strategies in it. We tried to propose a new way of comparing
strategies.

We succeeded in creating an artificial stock market which was close to the real
one in terms of stylised facts. It seems that VARMA models outperformed VAR
models and neural networks, which is probably due to the randomly chosen topology.
Backpropagation also seems to be less efficient than genetic algorithms in this setup,
which is probably due to the fact that genetic algorithms can seek through a larger
space.

References

[1] Š́ıma, J., and Neruda, R.: Teoretické Otázky Neuronových Śıt́ı. Matfyzpress, Praha,
1996.

[2] Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, 2005.

[3] Chen, S., and Yeh, C.: Genetic Programming in Agent-Based Artificial Markets:
Simulations and Analysis.

[4] Reinsel, G. C.: Elements of Multivariate Time Series Analysis. Springer, 2003.

[5] Matassini, L., and Franci, F.: On Financial Markets Trading, Physica A: Statistical
Mechanics and its Applications 3–4 (2001), 526–542.

[6] LeBaron, B.: Building the Santa Fe Artificial Stock Market. Brandeis University,
2002.

[7] Saracoglu, R.: The Maximum Likelihood Estimation of Parameters in Mixed Autore-
gressive Moving-Average Multivariate Models. Federal Reserve Bank of Minneapolis,
1977.

[8] Berndt, E. K., and Hall, B. H., and Hall, R. E., and Hausman, J. A.: Estimation and
Inference in Nonlinear Structural Models, Annals of Economic and Social Measure-
ment (1974), 653–665.

[9] Dorffner, G.: Neural Networks for Time Series Processing, Neural Network World 6
(1996), 447–468.

[10] Boden, M.: A Guide to Recurrent Neural Networks and Backpropagation. In the
Dallas project, 2002.

64

[11] Hamilton, J. D: Time Series Analysis. Princeton University Press, 1994.

[12] Palmer, R. G., and Arthur, W. B., and Holland, J. H., and LeBaron, B., and Tay-
lor, P.: Artificial Economic Life: A Simple Model of a Stockmarket, Physica D 75
(1994), 264–274.

65

